

Il presente catalogo riassume i dati essenziali che illustrano l'impiego delle valvole FIVRE per MA/MF, TV, Cinescopi e Transistori mentre le caratteristiche ed i dati per le diverse prestazioni sono contenute nei due raccoglitori (copertina rossa) del nuovo Manuale Tubi Riceventi FIVRE a fogli mobili.

Il costo del Manuale è di L. 6.000
- compresa IGE e spese di spedizione
postali. I possessori avranno diritto a
ricevere gli aggiornamenti fino a tutto
il 1961 e le informazioni tecniche che
nello stesso periodo verranno pubblicate.
Le richieste per i Manuali Tubi Riceventi debbono essere indirizzate esclusivamente alla FIVRE - Servizio Pubblicazioni Tecniche - Via Guastalla 2,
Milano.

Valvole di tipo europeo intercambiabili con tipi FIVRE

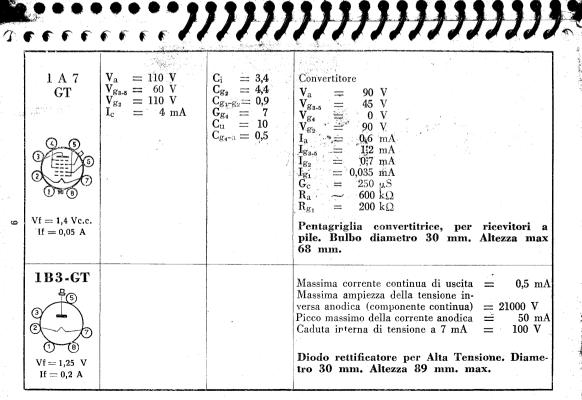
Tipi europei	Tipi FIYRE	_	Tipi europei	Tipi FIVRE
DAF 91	1S5		ECF 82	6U8
DF 33	1N5 GT		ECH 81	6AJ8
DF 91	1T4		EF 93	6BA6
DF 92	1L4		EF 94	6AU6
DF 904	1U4		EH 90	6CS6
DK 91	1R5		EK 90	6BE6
DL 33	3Q5		EL 37	6L6 G
DL 36	1Q5 GT		EL 84	6BQ5
DL 92	3S4		EL 90	6AQ5
DL 93	3A4		EM 80	6BR5
DL 94	3V4		EZ 90	6X4
DY 30	1B3 GT		GZ 3 2	5V4 G
DY 80	1X2 A/B		GZ 34	5U4 G
EAA 91	6AL5		HAA 91	12AL5
EABC 80	6T8		HABC 80	19T8
EB 91	6AL5		HBC 90	12AT6
EBC 90	6AT6		HBC 91	12AV6
EBC 91	6AV6		HF 93	12BA6
EC 90	6C4		HF 94	12AU6
EC 92	6AB4		HK 90	12BE6
ECC 81	12AT7		HL 92	50C5
ECC 82	12AU7		HY 90	35W4
ECC 83	12AX7		PCF 82	9U8

Simboli e principali indicazioni usate nelle tabelle

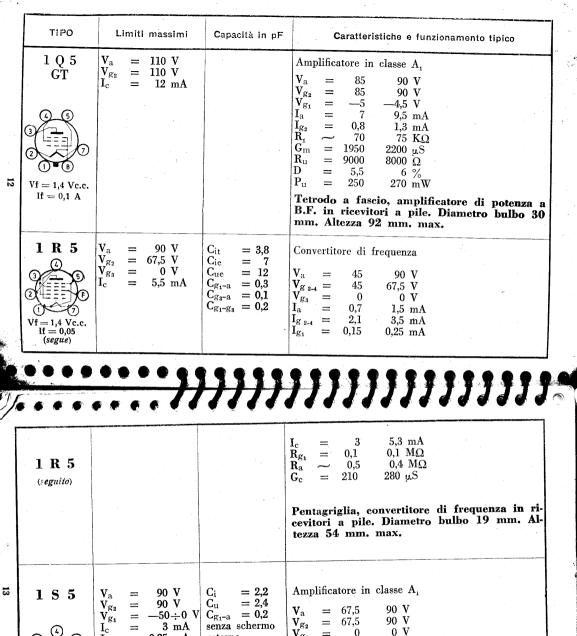
Anodo Triodo Griglia Pentodo Catodo Esodo / Eptodo Filamento Sezione 1 sez. Diodo Sezione 2 sez. Anodo luminescente al Ingresso Schermo sch Uscita Utilizzaz. Non connesso n. c. Non esiste n. e. Tensione volt

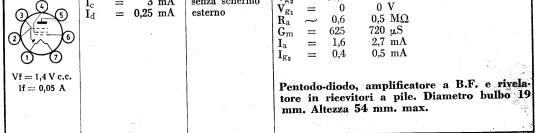
Corrente mA/ADissipazione o potenza watt Resistenza Ω Capacità pFTransconduttanza Gm $\hat{\mathbf{u}}\mathbf{S}$ Transcond. conversione Ge μS Distorsione D Coeffic. amplificazione μ

CINESCOPI

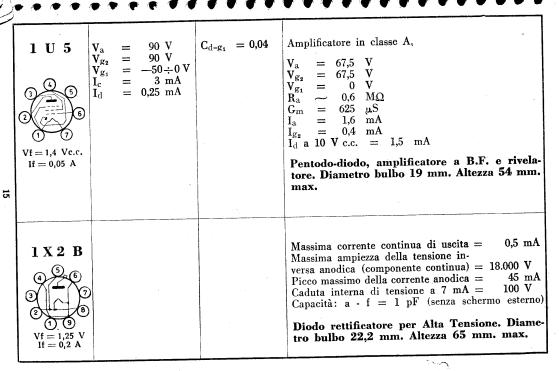

Elettrodo comando acceleratore focalizzazioneanodico a Rivestimento esterno r. e.

COMBINAZIONI - Esempi: Tensione anodica esodo Vae Corrente griglia n.º 2 e n.º 4 \mathbf{Ig}_{2-4} Capacità griglia n. 1 e anodo Cg_4-a Potenza di uscita Wu Dissipazione anodica Wa Tensione tra filamento e catodo Vf-c


NOTA I tipi la cui sigla è indicata in neretto, per es. (0A2), sono appartenenti alle serie normalizzate.

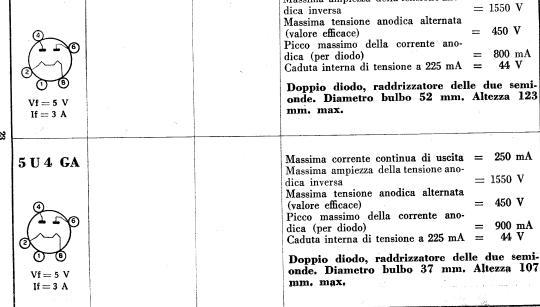

- I tipi con carattere normale, per es. (1A7-GT), sono di uso generale ebmican.
- I tipi in corsivo, per es. (6A6), sono in eliminazione. I tipi contrassegnati con asterisco, per es. (6AF4-A*), sono in pre-
- parazione.

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
0 A 2			Alimentazione placca = 185 V c.c. min Tensione di ionizzazione = 155 V c.c. Tensione di operazione = 150 V c.c. Corrente di operazione = 5 mA c.c. min Corrente di operazione = 30 mA c.c. max Regolazione = 2 V c.c. (tra 5 e 30 mA) Stabilizzatore di tensione a gas - Bulbo diametro 19 mm. Altezza 60,5 mm.
0 B 2			Alimentazione placca = 133 V c.c. min Tensione di ionizzazione = 115 V c.c. Tensione di operazione = 105 V c.c. Corrente di operazione = 5 mA c.c. min Corrente di operazione = 30 mA c.c. max Regolazione = 1 V c.c. (tra 5 e 30 mA) Stabilizzatore di tensione a gas - Bulbo diametro 19 mm. Altezza 60,5 mm.



	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
10	1 H 5 - GT (4 5) (5 6) (2 7) (8) (9 1,4 V c.c.) 1f = 0,05 A	$egin{array}{ll} V_a &=& 110 \ V \\ I_d &=& 0.25 \ mA \\ V_{g_1} &=& mai \ positiva \end{array}$	$egin{array}{l} C_{ m g_{1}-c} &= 1.0 \ C_{ m g_{1}-c} &= 1.1 \ C_{ m a-c} &= 4.6 \ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	1 L 4	$V_a = 110 \text{ V}$ $V_{g_2} = 90 \text{ V}$ $V_{g_1} = 0 \text{ V}$ $I_c = 6,5 \text{ mA}$	$C_{g_1-a} = 0.01$ $C_i = 3.6$ $C_u = 7.5$	Amplificatore in classe A_1 $V_a = 90 90 V$ $V_{g_2} = 67,5 90 V$ $V_{g_1} = 0 0 V$ $R_a \sim 600 260 K\Omega$ $G_m = 925 1025 \mu S$ $I_a = 2,9 4,5 mA$ $I_{g_2} = 1,2 2 mA$ Pentodo, amplificatore a R.F. e F.I., per ricevitori a pile. Diametro bulbo 19 mm. Altezza 47,6 mm. max.
少少			7777	
		$V_{\sigma_0} = 50 \text{ V}$	$C_{i}^{i} = 3,2$ $C_{u} = 6,0$	Amplificatore in classe A_1 $V_a = 45 90 V$ $V_{g_2} = 45 45 V$ $V_{g_1} = 0 0 V$ $I_a = 0.55 0.6 \text{mA}$ $I_{g_2} = 0.12 0.11 \text{mA}$ $G_m = 550 575 \mu S$ $R_a = 900 750 K\Omega$ Pentodo-diodo, rivelatore ed amplificatore B.F. Diametro bulbo 29 mm. Altezza 57 mm. max.
11	GT	$egin{array}{lll} V_{a} & = & 110 \ V \ V_{g_{2}} & = & 110 \ I_{c} & = & 5 \ mA \end{array}$	$C_{g_1-a} = 0,007$ $C_i = 2,8$ $C_{tt} = 9,0$	Amplificatore in classe A_1 $V_a = 90 \text{ V}$ $V_{g_2} = 90 \text{ V}$ $V_{g_1} = 0 \text{ V}$ $R_a \sim 1.5 \text{ M}\Omega$ $G_m = 750 \text{ g.S}$ $I_a = 1.2 \text{ mA}$ $I_{g_2} = 0.3 \text{ mA}$ Pentodo, amplificatore a R.F. e F.I. in ricevitori a pile. Diametro bulbo 30 mm. Altezza 68 mm. max.

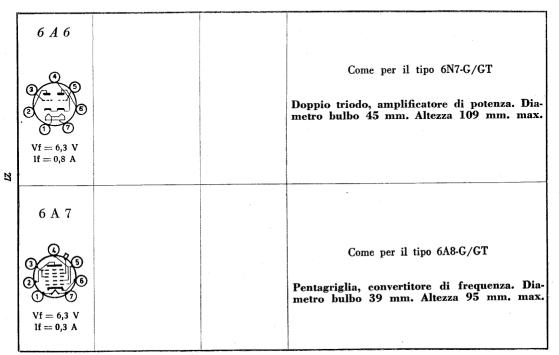
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
1 T 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} C_{i} & = 3.6 \\ C_{u} & = 7.5 \\ C_{g_{1}-a} & = 0.01 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
1 U 4 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} C_{i} & = 3,6 \\ C_{u} & = 7,5 \\ C_{g_{1}-a} & = 0,01 \end{array}$	Amplificatore in classe A_1 $V_a = 90 V$ $V_{g_2} = 90 V$ $V_{g_1} = 0 V$ $R_a \sim 1 M\Omega$ $G_m = 900 \mu S$ $I_a = 1.6 mA$ $I_{g_2} = 0.5 mA$ Pentodo, amplificatore a R.F. e F.I. in rice vitori a pile. Diametro bulbo 19 mm. Altezza 54 mm. max.

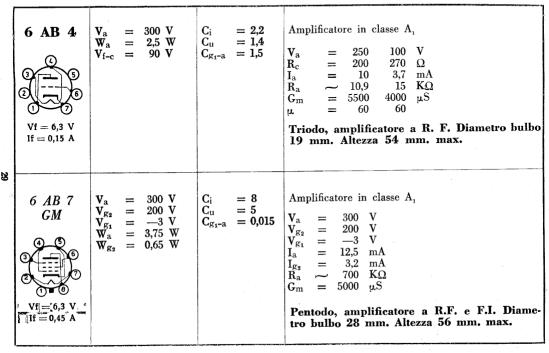

	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
	2 A 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{g_1-a} = 16,5$ $C_i = 7,5$ $C_{tt} = 5,5$ senza schermo	
			esterno	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
16	Vf = 2,5 V $If. = 2,5 A$			Amplificatore in controfase classe AB ₁ (2 valvole)
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
				Triodo, amplificatore di potenza a B.F. Diametro bulbo 57 mm. Altezza 123 mm. max.
S			17777	
 	2 A 5	eres!		
	2 A 5			Come per il tipo 6F6-GT
	3 2 0 0 0 0 0 0 Vf = 2,5 V			Come per il tipo 6F6-GT
17	3 0 0 0 0 0 0 0 0 0 0			Come per il tipo 6F6-GT Pentodo, amplificatore di potenza a B.F. Diametro del bulbo 44,5 mm. Altezza 95 mm.
17	3 2 0 0 0 0 0 0 Vf = 2,5 V			Come per il tipo 6F6-GT Pentodo, amplificatore di potenza a B.F. Diametro del bulbo 44,5 mm. Altezza 95 mm.
17	3 3 0 0 0 0 0 0 0 0 0 0 0 0 0			Come per il tipo 6F6-GT Pentodo, amplificatore di potenza a B.F. Diametro del bulbo 44,5 mm. Altezza 95 mm. max.
	3 3 0 0 0 0 0 0 0 0 0 0 0 0 0			Come per il tipo 6F6-GT Pentodo, amplificatore di potenza a B.F. Diametro del bulbo 44,5 mm. Altezza 95 mm. max. Come per il tipo 6SQ7-GT Doppio diodo-triodo, amplificatore B.F. rive latore. Diametro bulbo 39 mm. Altezza 95

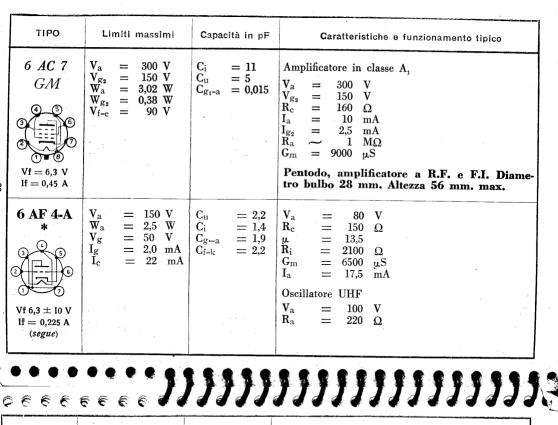
	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
1 8	2 A 7			Come per il tipo 6A8-GT Pentagriglia, convertitore di frequenza. Diametro bulbo 39 mm. Altezza 95 mm. max.
	2 B 7		77777	Come per il tipo 6B8-GT Doppio diodo pentodo, rivelatore amplificatore B.F. Diametro bulbo 39 mm. Altezza 95 mm. max.
199	3 A 4 Filam. serie Vf = 2,8 V If = 0,1 A Filam. parall. Vf = 1,4 V If = 0,2 A	$\begin{array}{rcl} V_a & = & 150 \text{ V} \\ V_{g_2} & = & 90 \text{ V} \\ I_c & = & 18 \text{ mA} \\ W_a & = & 2 \text{ W} \\ W_{g_2} & = & 0.4 \text{ W} \end{array}$	$C_{i} = 4.8$ $C_{u} = 4.2$ $C_{g_{1}-a} = 0.34$ senza schermo esterno	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	3 D 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{i} = 7.5$ $C_{u} = 6.5$ $C_{g_{1}-a} = 0.3$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

ſ	TIPO	Limiti massimi	Capacità In pF	Caratteristiche e funzionamento tipico
	3 D 6 (seguito) Filam. serie Vf = 2,8 V If = 0,11 A Filam. parall. Vf = 1,4 V If = 0,22 A			$\begin{array}{llllllllllllllllllllllllllllllllllll$
20	3 Q 5 GT (2 5) (2 5) (2 7) (2 7) (3 7) (4 7) (7 8) (7 8) (8 7) (8 7) (9	$V_a = 110 \text{ V}$ $V_{g_2} = 110 \text{ V}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Filam. parall. Vf = 1,4 V If = 0,1 A			Pentodo, amplificatore di potenza a B.F. in ricevitori a pile. Diametro bulbo 30 mm. Altezza 70 mm. max.
			וננני	7777777777
21	3 S 4 Filam. serie Vf = 2,8 V If = 0,05 A Filam. parall. Vf = 1,4 V If = 0,1 A	$\begin{array}{lll} Filam. \ serie \\ V_a & = & 90 \ V \\ V_{g_2} & = & 67.5 \ V \\ I_c & = & 4.5 \ mA \\ \hline Filam. \ parallelo \\ V_a & = & 90 \ V \\ V_{\alpha_2} & = & 67.5 \ V \\ I_c & = & 9 \ mA \\ \end{array}$	$\begin{array}{ll} C_i &= 4.8 \\ C_u &= 4 \\ C_{g_1-a} &= 0.3 \\ senza \ schermo \\ esterno \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3 V 4	$\begin{array}{lll} Filam. \ serie \\ V_a &=& 90 \ V \\ V_{g_2} &=& 90 \ V \\ I_c &=& 6 \ mA \\ Filam. \ parallelo \\ V_a &=& 90 \ mA \end{array}$	$\begin{array}{ll} C_{\rm i} &= 5.5 \\ C_{\rm u} &= 3.8 \\ C_{\rm g_{3}a} &= 0.2 \\ \text{senza schermo} \\ \text{esterno} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

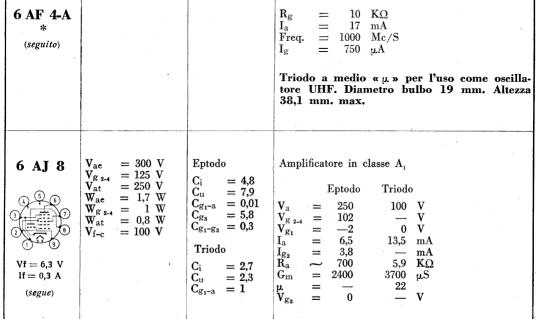
P (4)


TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento típico
3 V 4 (seguito)		•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Filam. serie Vf = 2.8 V If = 0.05 A Filam. parall. Vf = 1.4 V If = 0.1 A			Pentodo, amplificatore di potenza a B.F. in ricevitori a pile. Diametro bulbo 19 mm. Al tezza 54 mm. max.
5 R 4 GY 3 1 8 Vf = 5 V If = 2 A			Massima corrente continua di uscita = 250 mA Massima ampiezza della tensione anodica inversa = 2800 V Massima tensione anodica alternata (valore efficace) = 750 V Picco massimo della corrente anodica (per diodo) = 650 mA Caduta interna di tensione a 250 mA = 67 V Doppio diodo, raddrizzatore delle due semionde per uso professionale. Diametro bulb 52 mm. Altezza 123 mm. max.
* * * * • 5 U 4 G	••••	,,,,,,	Massima corrente continua di uscita = 225 mA Massima ampiezza della tensione ano:

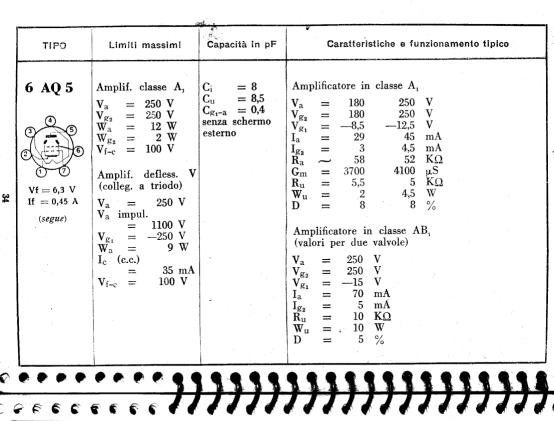

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
5 V 4 G 3 1 6 2 7 7 1 8 Vf = 5 V If = 2 A			Massima corrente continua di uscita = 175 mA Massima ampiezza della tensione inversa anodica = 1400 V Massima tensione anodica alternata (valore efficace) = 375 V Picco massimo della corrente anodica (per diodo) = 525 mA Caduta interna di tensione a 175 mA = 25 V Doppio diodo, raddrizzatore delle due semionde. Diametro bulbo 45 mm. Altezza 109 mm. max.
5 Y 3 G GT (3) (4) (5) (6) (7) (7) (8) (9) (9) (1) (9) (1) (1) (1) (1) (1) (1) (1) (1			Massima corrente continua di uscita = 125 mA Massima ampiezza della tensione inversa anodica = 1400 V Massima tensione anodica alternata (valore efficace) = 350 V Picco massimo della corrente anodica (per diodo) = 440 mA Caduta interna di tensione a 125 mA = 60 V Doppio diodo, raddrizzatore delle due semionde. Diametro bulbo 30 mm. Altezza 70 mm. max.

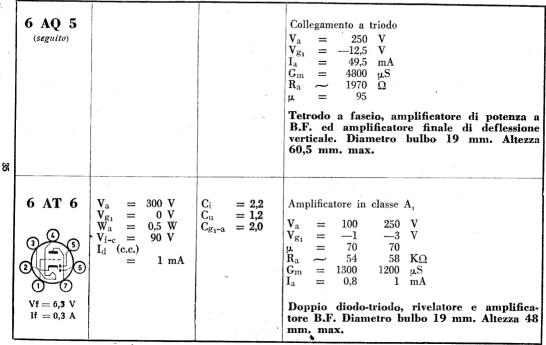

5 Y 3 GR	Massima corrente continua di uscita = 100 mA Massima ampiezza della tensione inversa anodica = 1400 V Massima tensione anodica alternata (valore efficace) = 350 V Picco massimo della corrente anodica (per diodo) = 300 mA Caduta interna di tensione a 100 mA = 47 V
Vf = 5 V If = 1 A	Doppio diodo, raddrizzatore delle due semi- onde a consumo ridotto. Diametro bulbo 45 mm. Altezza 103 mm. max.
5 Y 4 G	
3 1 1 7 7 Yf = 5 V 1f = 2 A	Come per il tipo 5Y3-GT Doppio diodo raddrizzatore delle semionde Diametro bulbo 45 mm. Altezza 103 mm. max.

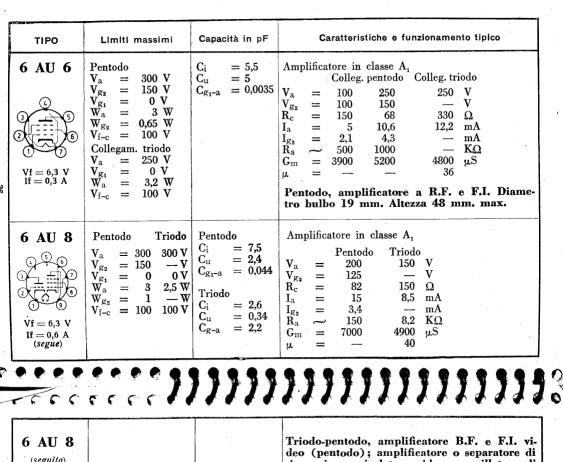

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
5 X 4 G			
3 1 2 7 7 7 1 6 1 7 7 1 7 1 7 1 7 1 7 1 7 1 7			Come per il tipo 5U4-G Doppio diodo raddrezzatore delle due semionde. Diametro bulbo 51 mm. Altezza 123 mm. max.
5 Z 3			
②3 ①4 Vf = 5 V If = 3 A			Come per il tipo 5U4-G Doppio diodo raddrizzatore delle due semion- de. Diametro bulbo 51 mm. Altezza 123 mm. max.

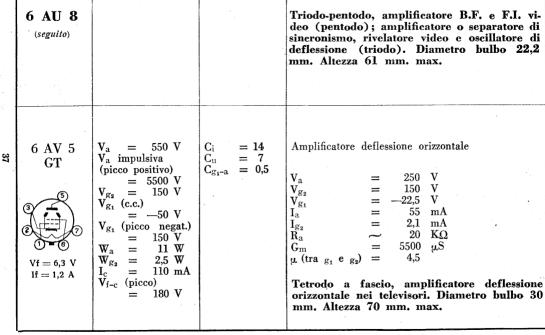


TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 A 8 G O O O O O O O O O O O O O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Convertitore di frequenza $ \begin{array}{lllllllllllllllllllllllllllllllllll$
6 A 8 GT			Come per il tipo 6A8-G Pentagriglia, convertitore di frequenza. Diametro bulbo 30 mm. Altezza 68 mm. max.

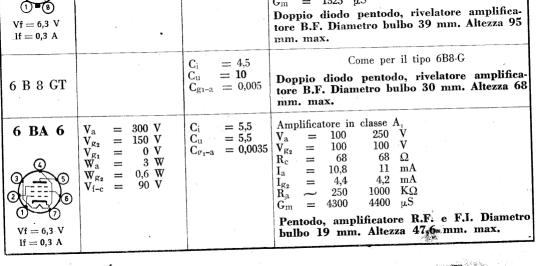







TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 AJ 8 (seguito)			Convertitore di frequenza (*) $V_{a e} = 250 \text{ V}$ $V_{g_{2-4}} = 100 \text{ V}$ $V_{a t} = 100 \text{ V}$ $V_{g_{1}} = -2 \text{ V}$ $I_{a e} = 3.25 \text{ mA}$ $I_{g_{2-4}} = 6.7 \text{ mA}$ $I_{a t} = 4.5 \text{ mA}$ $R_{a} \sim 1 \text{ M}\Omega$ $G_{c} = 775 \mu\text{S}$ $I_{g t} = 200 \mu\text{A}$ $R_{g t} = 47 \text{ K}\Omega$ (*) g triodo collegato a g_{3} eptodo.
			Triodo eptodo, amplificatore F.I. e converti tore in ricevitori MA/MF e TV. Diametro max bulbo 22,2 mm. Altezza max. 60,3 mm.

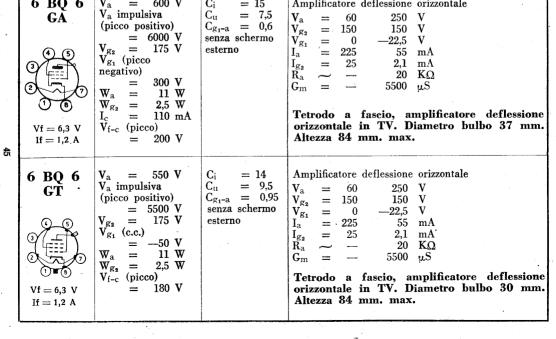
	6 AL 5 3 (2) (5) (7) (7) (8) (1) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	C _c 3,6 3,6	Massima corrente continua di uscita (per diodo) = 9 mA Massima ampiezza della tensione inversa anodica = 330 V Massima tensione anodica alternata (valore efficace) = 117 V Picco massimo della corrente anodica (per diodo) = 54 mA Caduta interna di tensione a 60 mA = 10 V Doppio diodo, rivelatore o discriminatore per ricevitori MA e MF. Diametro bulbo 19 mm. Altezza 39 mm. max.
25	6 AM 8 * Vf = 6,3 V If = 0,3 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$



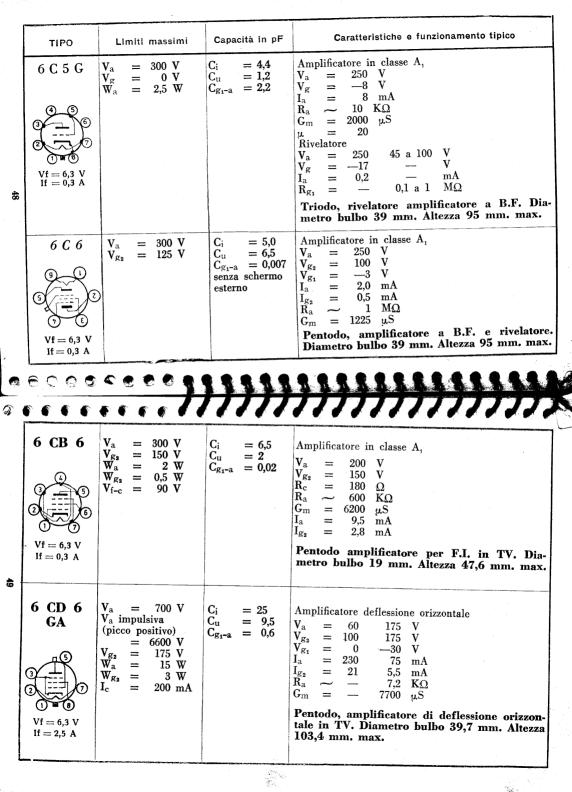
		-	
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 AV 6 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} C_{i} &= 2,2 \\ C_{u} &= 1,2 \\ C_{g_{1}-a} &= 2 \\ C_{g_{1}-d_{2}} &= 0,04 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
6 AW 5 GT			Massima corrente continua di uscita (per diodo) = 70 mA Massima ampiezza della tensione inversa anodica = 1250 V Massima tensione anodica alternata (valore efficace) = 325 V Picco massimo della corrente anodica (per diodo) = 210 mA Massima tensione continua tra filamento e catodo = 450 V Doppio diodo, raddrizzatore per due semionde, duplicatore di tensione. Diametro bulbo 30 mm. Altezza 78 mm. max.

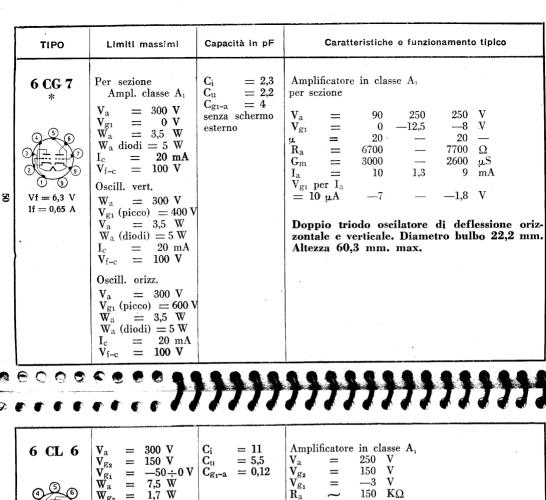
	6 AX 4 GT 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Massima corrente continua di uscita (per diodo) = 125 mA Massima ampiezza della tensione inversa = 4400 V Picco massimo della corrente anodica = 750 mA Massima tensione continua tra filamento e catodo = 900 V Caduta interna di tensione a 250 mA = 32 V Diodo, smorzatore nel circuito di deflessione orizzontale in TV. Diametro bulbo 30 mm. Altezza 70 mm. max.
20	6 AX 5 GT		Massima corrente continua di uscita (per diodo) = 125 mA Massima ampiezza della tensione inversa = 1250 V Massima tensione anodica alternata (valore efficace) = 350 V Picco massimo della corrente anodica = 375 mA Massima tensione continua tra filamento e catodo = 450 V Caduta interna di tensione a 125 mA = 50 V Doppio diodo, raddrizzatore per due semionde. Diametro bulbo 30 mm. Altezza 70 mm. max.

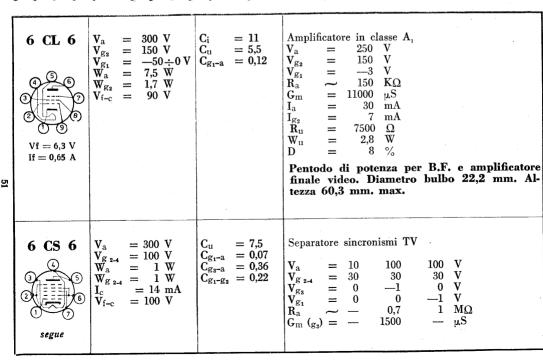
		1	
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 B 6 G			G 11 4 600 7 GW
Vf = 6,3 V If = 0,3 A			Come per il tipo 6SQ7-GT Doppio diodo-triodo, amplificatore B.F., rive latore. Diametro bulbo 39 mm. Altezza 95 mm. max.
6 B 7			
			Come per il tipo 6B8-GT Doppio diodo-pentodo, rivelatore, amplifica tore B.F. Diametro bulbo 39 mm. Altezza 95 mm. max.
Vf = 6,3 V If = 0,3 A		7777	}}}}}
6 B 8 G	V _a = 300 V V = 125 V	$ \begin{array}{cccc} C_{i} & = 3,6 \\ C_{ii} & = 9,5 \\ C_{max} & = 0.01 \end{array} $	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Vf = 6,3 V If = 0,3 A	•		$R_a \sim 600 \text{ K}\Omega$ $G_m = 1325 \mu\text{S}$ Doppio diodo pentodo, rivelatore amplificatore B.F. Diametro bulbo 39 mm. Altezza 95 mm. max.
6 B 8 GT		$ \begin{array}{lll} C_{\rm i} & = 4.5 \\ C_{\rm u} & = 10 \\ C_{\rm g_{1-a}} & = 0.005 \end{array} $	Come per il tipo 6B8-G Doppio diodo pentodo, rivelatore amplifica- tore B.F. Diametro bulbo 30 mm. Altezza 68

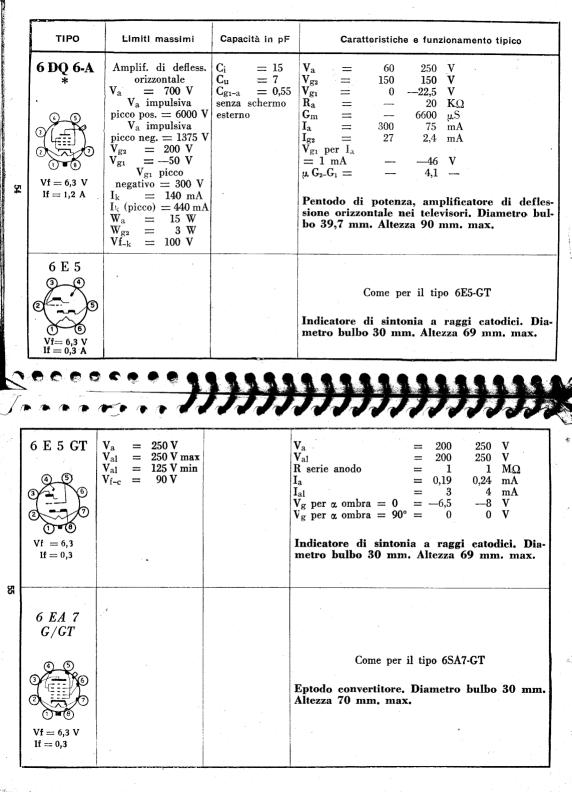


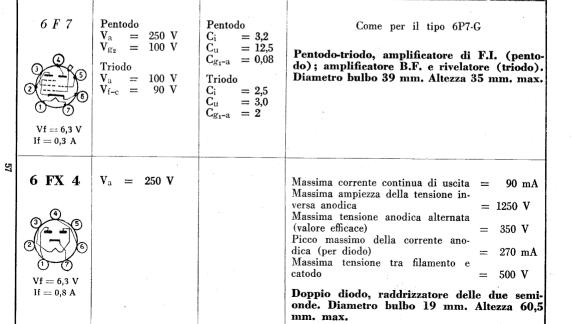
-				
	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
‡ 2	6 BE 6 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} C_i & = & 7 \\ C_u & = & 13 \\ C_{g_3-a} & = & 0,25 \\ C_{g_1-c} & = & 3 \\ C_{g_1-g_3} & = & 0,15 \\ C_{g_1-a} & = & 0,05 \\ \end{array}$	Convertitore di frequenza $\begin{array}{llllllllllllllllllllllllllllllllllll$
	6 BK 7 A (4) (5) (6) (7) (2) (8) (9) (16) (6,3) V If = 0,45 A (segue)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V 150 V
	• • •	5000	1111)))))))))X
7	* ^ ? •		1111	
	6 BK 7 A (seguito)		$\begin{array}{l} \text{Con griglia} \\ \text{a massa} \\ \text{C}_{\text{c}} = 6,0 6,0 \\ \text{C}_{\text{a}} = 2,4 2,4 \\ \text{C}_{\text{c-a}} = 0,22 0,22 \end{array}$	Doppio triodo per A.F. in amplificatori cascode per ingresso R.F. e per amplificatori a larga banda (B.F. video). Diametro bulbo 22,2 mm. Altezza 47,2 mm. max.
43	6 BN 8-G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{i} = 6$ $C_{u} = 9$ $C_{g_{1}-a} = 0,005$	Amplificatore in classe A_1 $V_a = 250 \text{ V}$ $V_{g_2} = 100 \text{ V}$ $V_{g_1} = -3 \text{ V}$ $R_a \sim 610 \text{ K}\Omega$ $G_m = 1150 \mu\text{S}$ $\mu = 700$
	Vf = 6,3 V If = 0,3 A			I _a = 8,5 mA I _{g2} = 1,9 mA Doppio diodo, amplificatore F.I. e rivelatore. Diametro bulbo 39 mm. Altezza 95 mm. max.
	6 BN 8-GT			Come 6BN8-G Doppio diodo pentodo, amplificatore F.I. e rivelatore. Diametro bulbo 30 mm. Altezza 68 mm. max.


Y

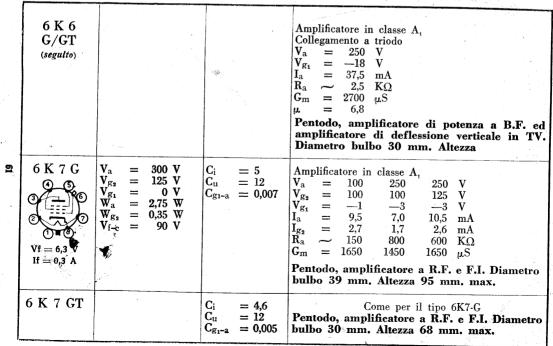

.e60.


	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 BQ 5 3 5 9 Vf = 6,3 V If = 0,76 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} C_{i} & = & 11 \\ C_{u} & = & 6 \\ C_{g_{1}\text{-}a} & = & 0.5 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
II = 0,70 A			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

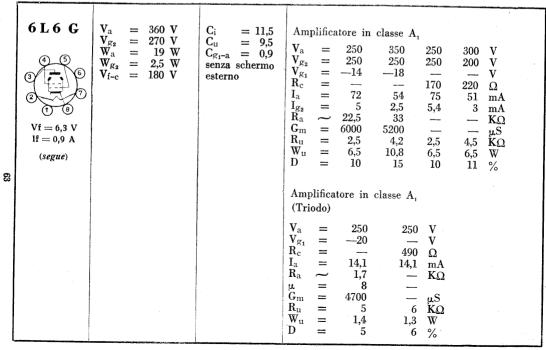

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 BR 5 * 9 10 11 12 13 15 15 16 16 17 18 18 18 18 18 18 18 18 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 BX 7 GT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{lll} \text{Sezione 1} \\ C_i &= 4,4 \\ C_u &= 1,1 \\ C_{g_1-a} &= 4,2 \\ \\ \text{Sezione 2} \\ C_i &= 4,8 \\ C_u &= 4,1 \\ C_{g_1-a} &= 4,0 \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
6005	60009	11111	111111111111
6 BX 7 GT (seguito)	I _c (picco) = 180 mA V _{f-c} = 100 V	$C_{g_1-g_1} = 0.11 \ C_{a-a} = 1.5 \ { m senza \ schermo} \ { m esterno}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 C 4 3 3 5 7 Vf = 6,3 V 1f = 0,15 A	$\begin{array}{c} \text{Ampl. Teleg} \\ \text{cl. A } \text{cl. O} \\ \text{V}_a = 300 \ \ 300 \ \text{V} \\ \text{V}_g =50 \ \text{V} \\ \text{W}_a = 3,5 \ \ 5 \ \text{W} \\ \text{I}_a = -25 \ \text{m}_A \\ \text{I}_g = -8 \ \text{m}_A \\ \text{V}_{f-c} = 100 \ \ 100 \end{array}$	$\begin{array}{c cccc} C_{\rm u} & = 2.5 \\ C_{\rm g_{1}-a} & = 1.4 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$



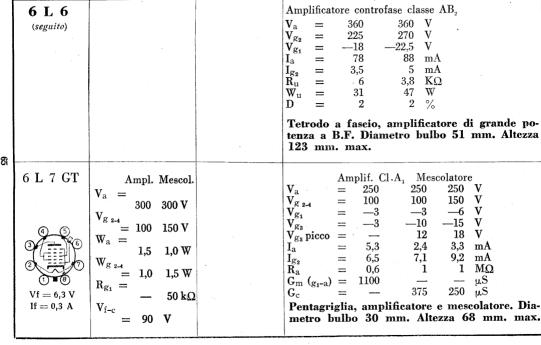
		.,	
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 CS 6 seguito Vf = 6,3 V			$G_{\rm m} (g_1) = -$ — 1100 μ S $I_a = 2$ 0,8 1 mA $I_{g_{2.4}} = 4.5$ 5,5 1,3 mA
u - 0,3 A		•	Eptodo separatore sincronismi antidisturbo in TV. Diametro bulbo 19 mm. Altezza 47,6 mm. max.
6 CS 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Vf = 6,3 V If = 0,6 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	senza schermo esterno	Doppio triodo. Sezione 1 come oscillatore di deflessione verticale. Sezione 2 come amplificatore deflessione verticale. Diametro bulbo 22,2 mm. Altezza 60,3 mm. max.
	$ \begin{array}{cccc} W_a & = & 6.5 \text{ W} \\ I_c & = & 30 \text{ mA} \\ I_c \text{ (picco)} \end{array} $		
6068	C		
	ee ee H	1111	
3.0	$egin{array}{lll} V_{g_2} & = & 150 \text{ V} \\ V_{g_1} & = & 0 \text{ V} \\ W_a & = & 2,25 \text{ W} \\ W_{g_2} & = & 0.25 \text{ W} \\ \end{array}$	$C_{g_1-a} = 6.5$ $C_{g_1-a} = 0.007$ $C_{g_1-a} = 0.007$	Amplificatore in classe A_1 $V_a = 100 250 V$ $V_{g_2} = 100 100 V$ $V_{g_1} = -3 -3 V$ $V_{g_2} = 8 8,2 M$ $V_{g_2} = 2,2 2 M$
Vf = 0,3 V If = 0,3 A			$G_{\rm m} \simeq 250$ 800 K Ω $G_{\rm m} \simeq 1500$ 1600 μS Pentodo, amplificatore per R.F. e F.I. Diametro bulbo 39 mm. Altezza 95 mm. max.
		$\begin{vmatrix} \mathbf{v} \\ \mathbf{v} \end{vmatrix}$	Convertitore di frequenza Ya = 250 V Yg 3-5 = 100 V
		$egin{bmatrix} \mathbf{V} \ \mathbf{V} \ \mathbf{I}_{\mathbf{a}} \end{bmatrix}$	$g_4 = -3$ V $g_2 = 250$ V di alimentazione a = 3,5 mA $g_3 = 2,6$ mA $g_4 = 4,3$ mA $g_4 = 0,4$ mA $g_4 = 0,4$ mA $g_5 = 550$ y.S
		P	entagriglia, convertitrice a consumo ridotto. Jiametro bulbo 30 mm. Altezza 68 mm. max.
	6 CS 6 seguito Vf = 6,3 V If - 0,3 A 6 CS 7 Vf = 6,3 V If = 0,6 A 6 D 6 Vf = 0,3 V If = 0,3 V If = 0,3 A	6 CS 6 seguito Vf = 6,3 V Vf = 0,3 A 6 CS 7 Vf = 6,3 V Vg1 (picco) Vg2 (picco) Vg3 (picco) Vg3 (picco) Vg4 (picco) Vg4 (picco) Vg5 (picco) Vg5 (picco) Vg6 (picco) Vg6 (picco) Vg1 (picco) Vg1 (picco) Vg2 (picco) Vg3 (picco) Vg3 (picco) Vg4 (picco) Vg5 (picco) Vg6 (picco) Vg6 (picco) Vg7 (picco) Vg8 = 300 V Vg9 = 150 V Vg1 = 0,25 W Vg2 = 0,25 W Vg2 = 0,25 W Vg2 = 0,25 W Vg3 = 0,25 W Vg6 = 0,3 V Vg = 0,25 W Vg = 0,3 V Vg = 0,25 W Vg = 0,3 V	6 CS 6 seguito Vf = 6,3 V If - 0,3 A 6 CS 7 Vi ₁ = 500 V Vg ₁ (picco) Wa = 1,25 W Vg ₂ = 20 mA I _c (picco) = 70 mA Sezione 2 Va = 500 V Vg ₁ (picco) = 2200 V Vg ₁ (picco) = 105 mA 6 D 6 V ₂ = 30 mA I _c (picco) = 0 V V ₃ (picco) = 105 mA 6 D 6 V ₄ = 300 V V ₅ = 0 V V ₆ = 0 V V ₇ = 0 V V ₈ = 0 V V ₁ = 0 V V ₁ = 0 V V ₂ = 0 V V ₂ = 0 V V ₃ = 0 V V ₄ = 0 V V ₅ = 0 V V ₆ = 0 V V ₇ = 0 V V ₈ =

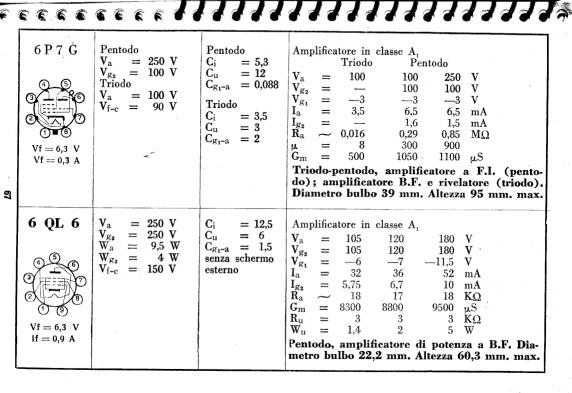


	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
56	6 F 6 G/GT (4) (5) (6) (2) (7) (9) (1) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{i} = 8.0$ $C_{u} = 6.5$ $C_{g_{1}-a} = 0.5$ con schermo connesso all'anodo	Amplificatore in classe A_1 , $V_a = 250 285 V$ $V_{g_2} = 250 250 V$ $V_{g_1} = -16.5 -20 V$ $I_a = 34 38 mA$ $I_{g_2} = 6.5 7 mA$ $R_a \sim 80 78 K\Omega$ $G_m = 2500 2550 \mu S$ $R_u = 7 7 K\Omega$ $W_u = 3.2 4.8 W$ $D = 8 9 \%$ Amplificatore controfase classe A_1 (Valori per due valvole) $V_a = 315 V$ $V_{g_2} = 285 V$ $V_{g_3} = -24 V$ $I_a = 62 mA$ $I_{g_2} = 12 mA$ $R_u = 10 K\Omega$ $W_u = 11 W$ $D = 4 \%$ Pentodo, amplificatore di potenza a B.F. Diametro bulbo 30 mm. Altezza 78 mm. max.

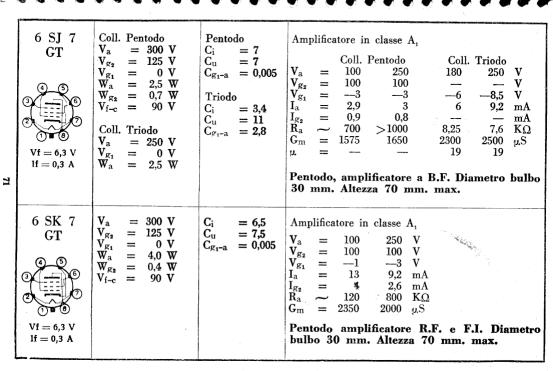


TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 G 5 3 4 2 5 Vf = 6,3 V If = 0,3 A	$V_a = 300 V$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 H 6 G/GT 3 5 6 7 7 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Massima corrente continua di uscita (per diodo) = 8 mA Massima ampiezza della tensione inversa anodica = 420 V Massima tensione anodica alternata (valore efficace) = 150 V Picco massimo della corrente anodica (per diodo) = 48 mA Caduta interna di tensione a 16 mA = 11 V Doppio diodo, rivelatore o discriminatore per ricevitori MA e MF. Diametro bulbo 30 mm. Altezza 70 mm. max.


TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 K 6 G/GT 3 1 6 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{g_1} = 5.5$ $C_a = 6.0$ $C_{g_{1}-a} = 0.5$ senza schermo esterno	$\begin{array}{llllllllllllllllllllllllllllllllllll$
6 K 6 G/GT (seguito)	66666	13333	Amplificatore in classe A, Collegamento a triodo $V_a = 250 \text{ V}$ $V_{g_1} = -18 \text{ V}$


TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 K 8 G O S O S O S O S O S O S O S O S O S O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} C_{g_3\text{-ae}} = 0.08 \\ C_{g_3\text{-at}} = 0.05 \\ C_{g_3\text{-gt}} = 0.2 \\ C_{gt\text{-at}} = 1.8 \\ C_{gt\text{-ae}} = 0.15 \\ C_{g_3} = 4.6 \\ C_{ae} = 4.8 \\ C_{gt} = 6.5 \\ C_{at} = 3.4 \\ \end{array}$	Convertitore di frequenza $ \begin{array}{lllllllllllllllllllllllllllllllllll$
6 K 8 TE GT			Come per il tipo 6TE8-GT Triodo-esodo, convertitore ed amplificator F.I. per ricevitori MA/MF. Diametro bulbo 30 mm. Altezza 60 mm. max.
9000 8666	600033		
6 L 6 G 3 5 2 7 Vf = 6,3 V If = 0,9 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{llllllllllllllllllllllllllllllllllll$

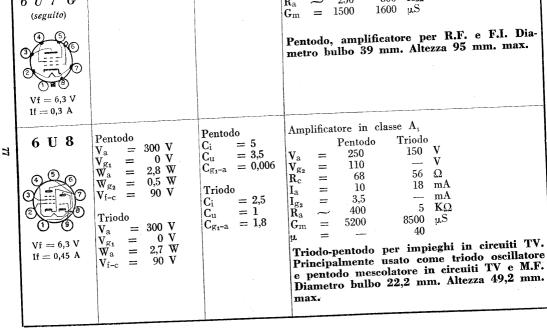
$egin{array}{cccccccccccccccccccccccccccccccccccc$	270 V 270 V — V 125 Ω 134 mA 11 mA 5 KΩ 18,5 W 2 %
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270 V — V 125 Ω 134 mA 11 mA 5 KΩ 18,5 W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125 Ω 134 mA 11 mA 5 KΩ 18,5 W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 mA 5 KΩ 18,5 W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 K Ω 18,5 W
$D = 2 2 2$ Amplificatore controfase classe AB_1	18,5 W 2 %
$V_2 = 360 360 360 V$	
7.4	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$R_c = - 250 \Omega$	Ω mA
$I_{g} = 5 5 5 m$	mA
	KΩ W
(segue) D = 2 2 2 %	%



-	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
	6 N 7 G/GT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	6 NK 7 GT (a) (5) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} C_{i} & = & 6 \\ C_{u} & = & 9,3 \\ C_{g_{1}-a} & = & 0,005 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
	6Q7-G (2) (5) (6) (7) (8) (9) (1) = 6,3 V (1) = 0,3 A	$V_{a} = 300 \text{ V}$ $V_{f-c} = 90 \text{ V}$ $I_{d} = 0,9 \text{ mA}$	$\begin{array}{ccc} C_{i} & = 2.2 \\ C_{u} & = 5 \\ C_{g_{1}\text{-}a} & = 1.6 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
SS	6 Q 7 GT			Come per il tipo 6Q7-G Doppio diodo-triodo, amplificatore B.F. e rivelatore. Diametro bulbo 30 mm. Altezza 60 mm. max.
	6 R Vf = 6,3 V If = 0,15 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{llllllllllllllllllllllllllllllllllll$

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 SA 7 GT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} C_{i} & = 11 \\ C_{u} & = 11 \\ C_{g_{3}-a} & = 0.5 \\ C_{it} & = 8 \\ C_{g_{1}-g_{3}} & = 0.4 \\ C_{g_{1}-a} & = 0.2 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
6 SH 7 GT	$V_{a} = 300 \text{ V} \\ V_{g_{2}} = 150 \text{ V}$	C _i = 8,5 C _u = 7,0 C _{g₁-a} = 0,003	Amplificatore in classe A, $V_a = 250 \text{ V}$ $V_a = 150 \text{ V}$ $V_{g_1} = -1 \text{ V}$ $I_a = 10.8 \text{ mA}$ $I_{g_2} = 4.1 \text{ mA}$ $R_a \sim 900 \text{ K}\Omega$ $G_m = 4900 \mu\text{S}$ Pentodo, amplificatore a R.F. e F.I. Diametrouble 30 mm. Altezza 70 mm. max.
6666)))))	***************************************
6 51 7	Coll Dontada	D	A 110


	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico	
	6 SL 7 GT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Amplificatore in classe A_1 $V_a = 250 \text{ V}$ $V_{g_1} = -2 \text{ V}$ $I_a = 2.3 \text{ mA}$ $\mu = 70$	
*	3 1 6		$ \begin{array}{lll} \text{C}_{i} & = 2,2 \\ \text{C}_{u} & = 0,75 \\ \text{C}_{g_{1}-a} & = 2,9 \end{array} $	$R_a \sim 44 \text{ K}\Omega$ $G_m = 1600 \mu\text{S}$	
72	Vf = 6,3 V $If = 0,3 A$		1.0	Doppio triodo, amplificatore B.F. e inverti- tore di fase. Diametro bulbo 30 mm. Altezza 70 mm. max.	
	6 SN 7 GT	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sezione 1 C _i = 2,8 C _u = 0,8	Amplificatore in classe A_i $V_a = 90 250 V$ $V_{g_1} = 0 -8 V$	
	3 2 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{g-a} = 3.8$ $Sezione 2$ $C_i = 3.0$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	Vf = 6,3 V Ii = 0,6 A		$C_{u} = 1.2$ $C_{g-a} = 4.0$	Doppio triodo, amplificatore B.F. e invertitore di fase. Diametro bulbo 30 mm. Altezza 84 mm. max.	
	9 0 0 0	e e e e e e			
·	GTA		Sezione 1 $C_i = 2,2$ $C_u = 0,7$	Amplificatore in classe A_1 $V_a = 90 250 V$ $V_\sigma = 0 -8 V$	
	9 9	$V_{f-c} = 100 \text{ V}$	$C_{g-3} = 4$ Sezione 2 $C_i = 2,6$ $C_u = 0,7$	$egin{array}{lll} R_a &=& 10 & 9 & mA \\ R_a & & & 6,7 & 7,7 & K\Omega \\ G_m &=& 3000 & 2600 & \mu S \\ \end{array}$	
	Vf = 6,3 V	$egin{array}{lll} V_{a} &=& 450 \ V \\ V_{a} \ (ullet) &=& 1500 \ V \\ V_{\sigma} \ (st) &=& 250 \ V \\ \end{array}$	$C_{g-a} = 3.8$	Doppio triodo, oscillatore ed amplificatore finale di deflessione in TV. (*) Impulsiva,	
73	If = 0,6 A			picco posit. (*) picco negat. (*) per due anodi. Diametro bulbo 30 mm. Alt. 70 mm. max.	
	6 SQ 7 GT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} C_{i} & = 4,2 \\ C_{u} & = 3,4 \\ C_{g-a} & = 1,8 \end{array}$	Amplificatore in classe A_1 $V_a = 100 250 V$ $V_{g_1} = -1 -2 V$	
	() (5) (3) - (6)	$V_{\text{f-c}} = 90 \text{ V}$ $I_{\text{d}} = 1 \text{ mA}$	senza schermo esterno	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Vf = 6,3 V If = 0,3 A			Doppio diodo-triodo, amplificatore B.F. rive- latore. Diametro bulbo 30 mm. Altezza 70 mm. max.	

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 T 7 G/GT 3 3 3 4 6 2 1 7 Vf = 6,3 V If = 0,15 A		$ \begin{array}{ccc} C_{i} & = 1,8 \\ C_{u} & = 3,1 \\ C_{g-a} & = 1,7 \end{array} $	$\begin{array}{llllllllllllllllllllllllllllllllllll$
6 T 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{lll} Triodo \\ C_i &= 1,6 \\ C_u &= 1,0 \\ C_{g_1-a} &= 2,2 \\ \hline \\ Diodi \\ C_{d_1} &= 4,2 \\ C_{d_2} &= 4,8 \\ C_{d_3} &= 4,0 \\ senza \ schermo \\ esterno \\ \hline \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Altezza 68 mm. max.

걺

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 TE 9 (a) (5) (6) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ll} Esodo \\ C_{\rm g_{1}-a} &= 0.25 \\ C_{\rm i} &= 5.7 \\ C_{\rm u} &= 14 \\ \\ Triodo \\ C_{\rm g_{1}-a} &= 1.7 \\ senza \ schermo \\ esterno \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 U 7 G (segue)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} C_{i} & = 5 \\ C_{u} & = 9 \\ C_{g_{1}-a} & = 0,007 \end{array}$	Triodo-esodo, convertitore. Diametro bul 22,2 mm. Altezza 60,3 mm. max. Amplificatore in classe A_1 $V_a = 100 250 V$ $V_{g_2} = 100 100 V$ $V_{g_1} = -3 -3 V$ $I_a = 8 8.2 mA$
6 U 7 G (seguito))) }}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 5 6			Pentodo, amplificatore per R.F. e F.I. Di metro bulbo 39 mm. Altezza 95 mm. max.

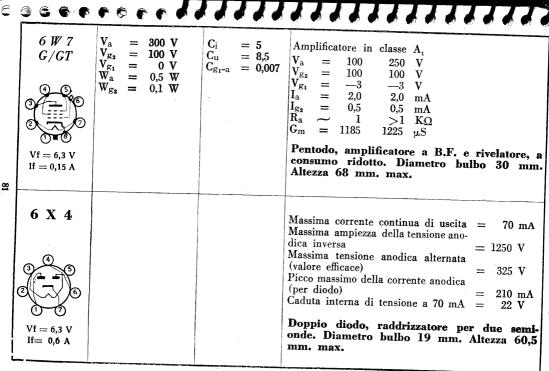
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 V 6 G/GT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{i} = 9$ $C_{u} = 7.5$ $C_{g_{i}-a} = 0.7$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

6 V 6 Collegamento a triodo G/GT250 V -12.5(seguito) 49,5 mA $G_{\rm m}$ 5000 uS. 9,8 1,96 $K\Omega$ Tetrodo a fascio, amplificatore di potenza a B.F. oppure amplificatore di deflessione verticale in TV. Diametro bulbo 30 mm. Altezza 76 mm. max. 125 mA Massima corrente continua di uscita 6 W 4 GT Massima ampiezza della tensione in-

Vf = 6.3 V1f = 1.2 A *- }}}}}}*

versa anodica

Picco massimo della corrente anodica


Caduta interna di tensione a 250 mA

Diodo, raddrizzatore di una semionda o smorzatore (Damper) in circuiti TV. Diametro bulbo 30 mm. Altezza 70 mm. max.

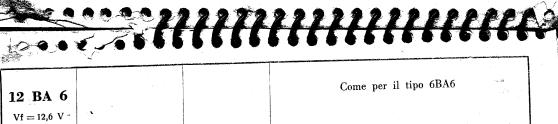
= 3850 V

750 mA 21 V

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 W 6 GT (9 5) (9 6) (9 7) (9	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{i}=15$ $C_{u}=9$ $C_{g_{1}-a}=0.8$ senza schermo esterno	Amplificatore in classe A_1 $V_a = 110 200 V$ $V_{g_2} = 110 125 V$ $V_{g_1} = -7.5 - V$ $R_c = - 180 \Omega$ $R_a \sim 13 28 K\Omega$ $G_m = 8000 8000 \mu S$ $I_a = 49 46 mA$ $I_{g_2} = 4 2.2 mA$ $R_u = 2000 4000 \Omega$ $W_u = 2.1 3.8 W$ $D = 10 10 \%$ Collegamento a triodo $V_a = 225 V$ $V_{g_1} = -30 V$ $I_a = 22 mA$ $\mu = 6.2$ $R_a \sim 1.6 K\Omega$ $G_m = 3800 \mu S$ Tetrodo a fascio, amplificatore di potenza a B.F. o amplificatore finale di deflessione ver ticale in TV. Diametro bulbo 30 mm. Altezza 76 mm. max.

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
6 X 5 GT 3			Massima corrente continua di uscita = 70 mA Massima ampiezza della tensione anodica inversa = 1250 V Massima tensione anodica alternata (valore efficace) = 325 V Picco massimo della corrente anodica (per diodo) = 210 mA Caduta interna di tensione a 70 mA = 22 V Doppio diodo, raddrizzatore per due semionde. Diametro bulbo 30 mm. Altezza 70 mm. max.
9 AQ 5			Come per il tipo 6AQ5
Vf = 9,45 V If = 0,3 A			Tetrodo a fascio, amplificatore di potenza a B.F. ed amplificatore finale di deflessione verticale. Diametro bulbo 19 mm. Altezza 60,5 mm. max.

9 BK 7 A			Come per il tipo 6BK7A
Vf = 9,45 V If = 0,3 A			Doppio triodo per A.F. in aplificatori cascode per ingresso R.F. e per amplificatori a larga banda (B.F. video). Diametro bulbo 22,2 mm. Altezza 47,2 mm. max.
9 T 8			Come per il tipo 6T8
Vf = 9,45 V If = 0,3 A			Triplo diodo-triodo, amplificatore B.F. rivelatore e discriminatore per ricevitori MA e MF. Diametro bulbo 22,2 mm. Altezza 49,2 mm. max.
9 U 8			Come per il tipo 6U8
Vf = 9,45 V If = 0,3 A			Triodo pentodo per impieghi in circuiti TV. Principalmente usato come triodo oscillatore e pentodo mescolatore in circuiti TV e MF. Diametro bulbo 22,2 mm. Altezza 42,2 mm. max.
	Vf = 9,45 V If = 0,3 A 9 T 8 Vf = 9,45 V If = 0,3 A 9 U 8 Vf = 9,45 V	Vf = 9,45 V If = 0,3 A 9 T 8 Vf = 9,45 V If = 0,3 A 9 U 8 Vf = 9,45 V	Vf = 9,45 V If = 0,3 A 9 T 8 Vf = 9,45 V If = 0,3 A 9 U 8 Vf = 9,45 V


	Limiti massimi	Capacità In pF	Caratteristiche e funzionamento tipico
12 A 6 GT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9 5 3 1 6 2 7			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Vf = 12,6 V If = 0,3 A			Tetrodo a fascio, amplificatore di potenza a B.F. Diametro bulbo 30 mm. Altezza 68,4 mm. max.
12 A 8 GT			Come per il tipo 6A8-GT
Vf = 12,6 V If = 0,15 A			Pentagriglia, convertitore di frequenza. Dia- metro bulbo 30 mm. Altezza 68 mm. max.
		1111	444444444
-60	200000	7777	

12 AJ 8	٠.	Come per il tipo 6AJ8
Vf = 12,6 V lf = 0,15 A		Triodo eptodo, amplificatore F.I. e convertitore in ricevitori MA/MF e TV. Diametr max. bulbo 22,2 mm. Altezza max. 60,3 mm
12 AL 5		Come per il tipo 6AL5
Vf = 12,6 V If = 0,15 A		Doppio diodo, rivelatore o discriminatore pericevitori MA e MF. Diametro bulbo 19 mm Altezza 39 mm. max.
12 AT 6		Come per il tipo 6AT6
Vf = 12,6 V If = 0,15 A		Doppio diodo-triodo, rivelatore e amplificatore B.F. Diametro bulbo 19 mm. Altezza 4 mm. max.

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
12 AT 7 (5 8) (3) (-7) (7) (2) (8) (1) (9) Filam. serie Vf = 12.6 V If = 0,15 A Filam. parall. Vf = 6,3 V If = 0,3 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Amplificatore in classe A_1 $V_a = 100 250 V$ $R_c = 270 200 \Omega$ $I_a = 3.7 10 \text{mA}$ $R_a \sim 15 10.9 \text{K}\Omega$ $G_m = 4000 5500 \mu\text{S}$ $\mu = 60 60$ $Doppio \ triodo, \ amplificatore \ R.F. \ con \ griglia \ a \ massa \ e \ convertitore \ a \ frequenze \ fino \ a \ 300 \ MHz. \ Diametro \ bulbo \ 22,2 \ mm. \ Altezza \ 49,2 \ mm. \ max.$
12 AU 6 Vf = 12,6 V If = 0,15 A			Come per il tipo 6AU6 Pentodo, amplificatore a R.F. e F.I. Diametro bulbo 19 mm. Altezza 48 mm. max.

	~ w ~ •		0 0 0 0	
. 07	12 AU 7	$\begin{array}{llllllllllllllllllllllllllllllllllll$	per ogni sezione Ci = 1,8 Cu = 2,0 Cg-a = 1,5	Amplificatore in classe A_1 (per sezione) $V_a = 100 / 250 \text{ V}$ $V_g = 0 - 8.5 \text{ V}$ $I_a = 11.8 10.5 \text{ mA}$ $R_a \sim 6.5 7.7 \text{ K}\Omega$ $G_m = 3100 2200 \text{ \mu.S}$ $\mu = 20 17$ Doppio triodo, amplificatore B.F., amplificatore finale deflessione verticale, invertitore di fase, multivibratore ed oscillatore. Diametro bulbo 22,2 mm. Altezza 49,2 mm. max.
	12 AU 8 * Vf = 12,6 V If = 0,3 A			Come per il tipo 6AU8 Triodo-pentodo amplificatore B.F. e F.I. video (pentodo); amplificatore o separatore di sincronismo, rivelatore video e oscillatore di deflessione (triodo). Diametro bulbo 22,2 mm. Altezza 61 mm. max.

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
12 AV 6 Vf = 12,6 V If = 0,15 A	•		Come per il tipo 6AV6 Doppio diodo-triodo, rivelatore amplificatore B.F. Diametro bulbo 19 mm. Altezza 47,6 mm. max.
12 AX 7 (1 5 6) (2 7 6) (2 7 6) (3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	per ogni sezione Va = 300 V Vg = -50÷0 V Wa = 1 W V _{f-c} = 180 V	$C_i = 1.8$	Amplificatore in classe A, (per sezione) $V_a = 100 250 V$ $V_g = -1 -2 V$ $I_a = 0.5 1.2 \text{mA}$ $R_a \sim 80 62.5 K\Omega$ $G_m = 1250 1600 \mu\text{S}$ $\mu = 100 100$ Doppio triodo, amplificatore B.F., invertitore di fase, separatore e multivibratore in circuiti TV. Diametro bulbo 22,2 mm. Altezza 49,2 mm. max.

Vf = 12,6 V If = 0,15 A	-		Pentodo amplificatore R.F. e F.I. Diametro del bulbo mm. 19. Altezza 47,6 mm. max.
12 BE 6 Vf = 12,6 V If = 0,15 A			Come per il tipo 6BE6 Eptodo convertitore per ricevitori MA e MF, in TV come separatore di sincronismi antidisturbo. Diametro bulbo 19 mm. Altezza 47,6 mm. max.
12 BH	Amplif. classe A_1 $V_a = 300 \text{ V}$ $W_a = 3.5 \text{ W}$ $I_c = 20 \text{ mA}$ $V_{f-c} = 100 \text{ V}$ Amplif. deflessione verticale V_a c.c. 450 V	$\begin{array}{ccccc} C_{a_1-a_2} &=& 0.8 \\ Sezione & 1 \\ C_i &=& 3.2 \\ C_u &=& 0.5 \\ C_{g-a} &=& 2.6 \\ Sezione & 2 \\ C_i &=& 3.2 \\ C_u &=& 0.4 \end{array}$	Amplificatore in classe Λ_1 $V_a = 250 \text{ V}$ $V_g = -10.5 \text{ V}$ $\mu = 16.5$ $R_a \sim 5.3 \text{ K}\Omega$ $G_m = 3100 \mu\text{S}$ $I_a = 11.5 \text{ mA}$

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
12 BH 7 (seguito) Filam. serie Vf = 12,6 V If = 0,3 A Filam. parall. Vf = 6,3 V If = 0,6 A	$\begin{array}{ccccc} V_a & \text{picco} & \text{posit.} \\ & = & 1500 \text{ V} \\ V_g & \text{picco} & \text{negat.} \\ & = & 250 \text{ V} \\ W_a & = & 3.5 \text{ W} \\ I_c & = & 20 \text{ mA} \\ I_c & \text{picco} \\ & = & 70 \text{ mA} \end{array}$	$C_{\mathrm{g-a}}=2.6$ senza schermo esterno	Doppio triodo, amplificatore finale deflessione verticale ed oscillatore deflessione verticale. Diametro bulbo 22,2 mm. Altezza 60,3 mm. max.
12 C 8 GT			Come per il tipo 6B8-GT
Vf = 12,6 V If = 0,15 A			Doppio diodo-pentodo, rivelatore amplificato- re B.F. Diametro bulbo 30 mm. Altezza 68 mm. max.
12 EA 7 GT			Come per il tipo 6SA7-GT
Vf = 12,6 V If = 0,15 A			Eptodo convertitore. Diametro bulbo 30 mm. Altezza 70 mm. max.



[# A	 	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Come per il tipo 6J5-GT Triodo amplificatore B.F. rivelatore ed oscillatore. Diametro bulbo 30 mm. Altezza 70 mm. max.
12 J 7 GT Vf = 12,6 V If = 0,15 A		Come per il tipo 6J7-GT Pentodo amplificatore B.F. Diametro bulbo 30 mm. Altezza 68 mm. max.
12 K 7 GT Vf = 12,6 V If = 0,15 A		Come per il tipo 6K7-GT Pentodo, amplificatore a R.F. e F.I. Diametro bulbo 30 mm. Altezza 68 mm. max.

	TIPO	Limiti massimi	Capacità in∋pF	Caratteristiche e funzionamento tipico
	12 NK 7 GT			Come per il tipo 6NK7-GT
	Vf = 12,6 V If = 0,15 A			Pentodo, amplificatore a R.F. e F.I. Diametro bulbo 30 mm. Altezza 68 mm. max.
5	$\begin{array}{c} 12 \text{ Q } 7 \\ \text{GT} \\ \text{Vf} = 12,6 \text{ V} \\ \text{If} = 0,15 \text{ A} \end{array}$			Come per il tipo 6Q7-GT Doppio diodo-triodo, amplificatore B.F. e rivelatore. Diametro bulbo 30 mm. Altezza 60 mm. max.
	12 SA 7 GT			Come per il tipo 6SA7-GT
	Vf = 12,6 V $If = 0,15 A$			Eptodo convertitore. Diametro bulbo 30 mm. Altezza 70 mm. max.

	24444444444444444444444444444444444444
12 SA 7 GD (5) (1) (6) (2) (7) (1) (8) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Come per il tipo 6SA7-GT Eptodo convertitore. Diametro bulbo 30 mm. Altezza 70 mm. max.
12 SJ 7 GT Vf = 12,6 V If = 0,15 A	Come per il tipo 6SJ7-GT Pentodo, amplificatore a B.F. e F.I. Diametro bulbo 30 mm. Altezza 70 mm. max.
12 SK 7 GT Vf = 12,6 V If = 0,15 A	Come per il tipo 6SK-7-GT Pentodo, amplificatore a B.F. e F.I. Diametro bulbo 30 mm. Altezza 70 mm. max.

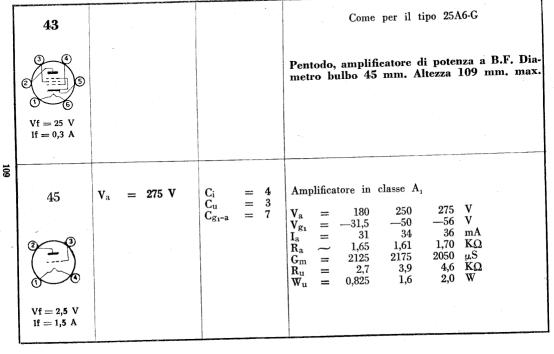
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
12 SL 7 GT			Come per il tipo 6SL7-GT
Vf = 12,6 V If = 0,15 A			Doppio triodo, amplificatore B.F. e invertitore di fase. Diametro bulbo 30 mm. Altezza 70 mm. max.
12 SN 7 GN			Come per il tipo 6SN7-GT
Vf = 12,6 V If = 0,3 A			Doppio triodo, amplificatore B.F. e inverti- tore di fase. Diametro bulbo 30 mm. Altezza 84 mm. max.
12 SN 7 GTA			Come per il tipo 6SN7-GTA
Vf = 12,6 V If = 0,3 A			Doppio triodo, oscilatore ed amplificatore fi- nale di deflessione in TV. (•) Impulsiva, pic- co posit. (*) in picco negativo. (•) per due anodi. Diametro bulbo 30 mm. Altezza 70 mm. max.

12 SQ 7 GT Vf = 12,6 V If = 0,15 A		Come per il tipo 6SQ7-GT Doppio diodo-triodo, amplificatore B.F. rivelatore. Diametro bulbo 30 mm. Altezza 70 mm. max.
12 TE 8 GT Vf = 12,6 V If = 0,15 A		Come per il tipo 6TE8-GT Triodo-esodo, convertitore ed amplificatore F.I. per ricevitori MA/MF. (•) Piedini 1 e 5 collegati insieme. Diametro bulbo 30 mm. Altezza 68 mm. max.
12 TE 9 Vf = 12,6 V If = 0,15 A		Come per il tipo 6TE9 Triodo-esodo, convertitore. Diametro bulbo 22,2 mm. Altezza 60,3 mm. max.

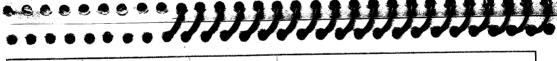
	TIPO	Limiti	massimi	Capacità in pl	Caratteristiche e funzionamento tipico
1	5 A 6 G seguito)				$G_{\rm m} = 2000 2450 2375 \mu S \ R_{\rm u} = 4.5 4 5 K \Omega \ W_{\rm u} = 0.9 2 2.2 W \ D = 11 9 10 \% \ Pentodo, amplificatore di potenza a B.F. Dia metro bulbo 45 mm. Altezza 109 mm. max$
Vf	5 AV 5 GT = 2,5 V = 0,3 A				Come per il tipo 6AV5-GT Tetrodo a fascio, amplificatore di deflessiono orizzontale nei televisori. Diametro bulbo 30 mm. Altezza 70 mm. max.
	AX 4 GT				Come per il tipo 6AX4-GT
	= 25 V = 0,3 A	*			Diodo, smorzatore nel circuito di deflessione orizzontale in TV. Diametro bulbo 30 mm. Altezza 70 mm. max.
2	20	• 0 9	e e	e e e e	
	• • •	• 0 •	H	ffff	HHHHHH
		• • •	M	ffff	
25 BGA Vf = 2 If = 0,	A 25 V	000	ica	7	HHHHHH
GA $Vf = 2$ $If = 0,$	Q 6			7	Come per il tipo 6BQ6-GA Cetrodo a fascio, amplificatore deflessione prizzontale in TV. Diametro bulbo 30 mm.
GA $Vf = 2$ $If = 0,$ $25 BC$	Q 6 Γ		THE STATE OF THE S	T o	Come per il tipo 6BQ6-GA Tetrodo a fascio, amplificatore deflessione rizzontale in TV. Diametro bulbo 30 mm. Altezza 84 mm. max.
Vf = 2 If = 0, 25 B(GT Vf = 2 If = 0,	Q 6 Γ 125 V 33 A			T o	Come per il tipo 6BQ6-GA Tetrodo a fascio, amplificatore deflessione rizzontale in TV. Diametro bulbo 30 mm. Altezza 84 mm. max. Come per il tipo 6BQ6-GT Tetrodo a fascio, amplificatore deflessione rizzontale in TV. Diametro bulbo 30 mm.
OA Vf = 2 If = 0, 25 BO GT Vf = 2 If = 0,	Q 6 Γ 15 V 3 A			T B ti	Come per il tipo 6BQ6-GA Tetrodo a fascio, amplificatore deflessione prizzontale in TV. Diametro bulbo 30 mm. Altezza 84 mm. max. Come per il tipo 6BQ6-GT Tetrodo a fascio, amplificatore deflessione rizzontale in TV. Diametro bulbo 30 mm. Altezza 84 mm. max.

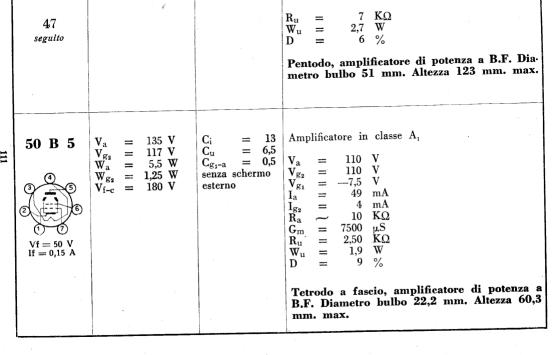
The second second	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
	25 W 4 GT			Come per il tipo 6W4-GT Diodo, raddrizzatore di una semionda o smor-
	Vf = 25 V If = 0,3 A	,		zatore (Damper) in circuiti TV. Diametro bulbo 30 mm. Altezza 70 mm. max.
	25 Z 5			Come per il tipo 25Z6-G/GT
100				Doppio diodo, raddrizzatore e duplicatore di tensione. Diametro bulbo 30 mm. Altezza 76 mm. max.
	Vf = 25 V If = 0,3 A			Massima corrente continua di uscita = 75 mA
	25 Z 6 G/GT			Massima ampiezza della tensione anodica inversa = 700 V
	3 6			Massima tensione anodica alternata (valore efficace) = 235 V Picco massimo della corrente anodica
	0.0			(per diodo) = 450 mA = 22 V
	(segue)	1	i	

25 Z 6 G/GT (seguito) Vf = 25 V If = 0,3 A		·	Doppio diodo, raddrizzatore e duplicatore di tensione. Diametro bulbo 30 mm. Altezza 76 mm. max.
27 2 3 Vf = 2,5 V If = 1,75 A	V _a = 275 V	$\begin{array}{ccc} C_{i} & = & 3,1 \\ C_{u} & = & 2,3 \\ C_{g-a} & = & 3,3 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
35 3 2 1 (segue)	V _a = 275 V	$\begin{array}{cccc} C_{i} & = & 5,3 \\ C_{u} & = & 10,5 \\ C_{g_{1}-a} & = & 0,007 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$


	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
	35 (seguito) Vf = 2,5 V If = 1,75 A			bulbo 45 mm. Altezza 111 mm. max. Tetrodo, amplificatore a R.F. e F.I. Diametro bulbo 45 mm. Altezza 111 mm. max.
102	35 B 5 3 5 0 5 0 7 0 7 0 7 0 7 0 7 0 7 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{lll} C_i &=& 11 \\ C_{u} &=& 6.5 \\ C_{g_1-a} &=& 0.4 \\ senza & schermo \\ esterno \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	If = 0,15 A			Tetrodo a fascio, amplificatore di potenza. Diametro bulbo 19 mm. Altezza 60,5 mm. max.
V	page •	0000	2222	2222222222
1				
1	, • • •	••••	7777	
	35 L 6 GT 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{i} = 13$ $C_{u} = 9.5$ $C_{g_{1}-a} = 0.8$ senza schermo esterno	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
103	GT O O O O O O O O O O O O O	$ \begin{array}{rcl} V_{g_2} & = & 125 \text{ V} \\ W_a & = & 8,5 \text{ W} \\ W_{g_2} & = & 1 \text{ W} \end{array} $	$C_{\rm u}=9.5$ $C_{\rm g_1-a}=0.8$ senza schermo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
103	GT (1) (5) (6) (7) (7) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	$ \begin{array}{rcl} V_{g_2} & = & 125 \text{ V} \\ W_a & = & 8,5 \text{ W} \\ W_{g_2} & = & 1 \text{ W} \end{array} $	$C_{\rm u}=9.5$ $C_{\rm g_1-a}=0.8$ senza schermo	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Massima corrente continua d'uscita:	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
dica inversa Massima tensione anodica alternata (valore efficace) Picco massimo della corrente anodica Massima tensione anodica alternata (segute) 35 X 4 (segute) Massima corrente continua di uscita Massima tensione anodica alternata Massima corrente continua di uscita Massima tensione anodica alternata Massima tensione anodica alternata (segute) Massima tensione anodica alternata (valore efficace) Picco massimo della corrente anodica effo Massima tensione anodica inversa Massima tensione tra filamento e catodo (valore efficace) Picco massimo della corrente anodica effo Ma Caduta interna di tensione a 200 mA Caduta interna di tensione a 200 mA Massima tensione tra filamento e catodo Diodo, raddrizzatore di una semionda. Diametro bulbo 19 mm. Altezza 60,5 mm. max. Massima corrente continua di uscita Massima corrente continua di uscita Massima tensione tra filamento e catodo Massima corrente continua di uscita Massima corrente continua di uscita Massima ampiezza della tensione anodica Caduta interna di te	35 W 4			- senza lampada del pannello = 100 mA - con lampada del pannello, senza resistenza in parallelo = 60 mA - con lampada del pannello, con resistenza in parallelo (lampada tra i piedini 4 e 6) = 90 mA
Massima corrente continua di uscita massima tensione anodica inversa massimo della corrente anodica massimo della corrente di una semionda. Diametro bulbo 19 mm. Altezza 60,5 mm. max. Massima corrente continua di uscita massimo della corrente anodica mas	4			dica inversa = 330 V Massima tensione anodica alternata (valore efficace) = 117 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e catodo = 330 V
(valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e catodo = 450 V Diodo, raddrizzatore di una semionda. Diametro bulbo 19 mm. Altezza 60,5 mm. max. Massima corrente continua di uscita = 100 mA Massima ampiezza della tensione anodica inversa = 700 V Massima tensione anodica alternata (valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e catodo = 350 V Diodo, raddrizzatore di una semionda. Diametro di una semionda.				Massima corrente continua di uscita = 100 mA Massima ampiezza della tensione ano- dica inversa = 700 V
Valore Efficace Picco massimo della corrente anodica 600 mA	-0.000			
Massima corrente continua di uscita = 100 mA Massima ampiezza della tensione anodica inversa = 700 V Massima tensione anodica alternata (valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e catodo = 350 V Diodo, raddrizzatore di una semionda. Dia-	-/	erell.		
Massima ampiezza della tensione anodica inversa = 700 V Massima tensione anodica alternata (valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e catodo = 350 V Diodo, raddrizzatore di una semionda. Dia-		erell.		(valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e
	(seguito) (3) (3) (5) (1) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9		+++++	(valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e catodo = 450 V
	(seguito) (3) (5) (2) (5) (8) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (5) (6) (1) (1) (1) (2) (4) (5) (6) (7) (1) (1) (1) (1) (2) (3) (4) (5) (6) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			(valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e catodo = 450 V Diodo, raddrizzatore di una semionda. Diametro bulbo 19 mm. Altezza 60,5 mm. max. Massima corrente continua di uscita = 100 mA Massima ampiezza della tensione anodica inversa = 700 V Massima tensione anodica alternata (valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA Massima tensione tra filamento e = 350 V

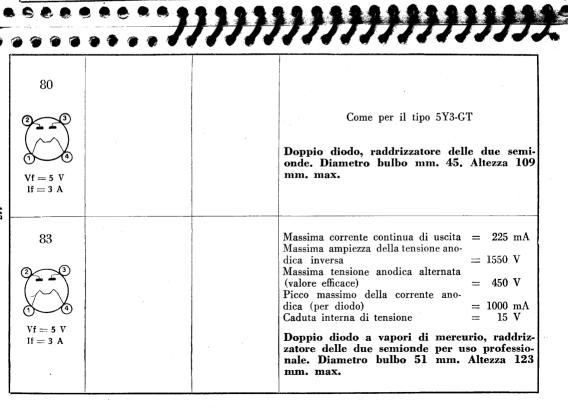

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
35 Z 5 GT 3 5 3 6 2 7 0 8 Vf = 35 V If = 0,15 A			Massima corrente continua d'uscita: — senza lampada del pannello, senza resistenza in parallelo = 60 mA — con lampada del pannello, con resistenza in parallelo (lampada tra i piedini 2 e 3) = 90 mA Massima ampiezza della tensione anodica inversa = 700 V Massima tensione anodica alternata (valore efficace) = 235 V Picco massimo della corrente anodica = 600 mA Caduta interna di tensione a 200 mA = 18 V Massima tensione tra filamento e catodo = 350 V Diodo, raddrizzatore di una semionda. Diametro bulbo 30 mm. Altezza 78 mm. max.
36 (segue)	$\begin{array}{ccccc} W_a & = & 250 \ V \\ V_a & = & 90 \ V \\ I_{g_a} & = & 1,7 \ mA \\ V_{f-c} & = & 90 \ V \\ \end{array}$	$\begin{array}{cccc} C_{g_1-a} & = & 0,007 \\ C_i & = & 3,7 \\ C_u & = & 9,2 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$


36 (seguito)							Ig2 Ra Gm	= } =	550 850	475 1000	500 1050	1,7 550 1080	mA KΩ μS
2 1 4							Teta	odo, mm.	amplif Altezza	icatore a 95 mn	a R.F. 1. max	Diamet •	ro bulbo
Vf = 6,3 V If = 0,3 A					and the second								
37	Va	=	250 V	$egin{array}{c} \mathbf{C_{g_1-a}} \\ \mathbf{C_i} \\ \mathbf{C_u} \end{array}$	=======================================	2 3,5 2,9	Va Vg ₁	=	90 —6	classe A 135 —9	250 —18	V V	
0 10	- ,						R _a G _m I _a		9,2 11,5 800 2,5	9,2 10 925 4,1	9,2 8,4 1100 7,15	KΩ μS mA	
Vf = 6,3 V If = 0,3 A						-				catore a			ore. Dia. . max.

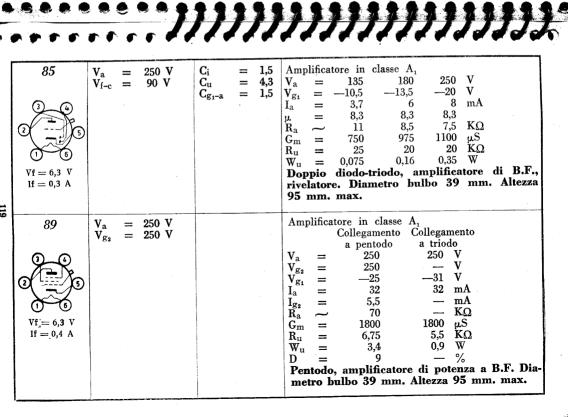
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
41			Come per il tipo 6K6-G/GT
0 0			Pentodo, amplificatore di potenza a B.F. et amplificatore di deflessione verticale in TV Diametro bulbo 39 mm. Altezza 95 mm. max
Vf = 6,3 V $If = 0,4 A$			
42			Come per il tipo 6F6-G/GT
(3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			Pentodo, amplificatore di potenza a B.F. Dia metro bulbo 45 mm. Altezza 109 mm, max
Vf = 6,3 V If = 0,7 A			

	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
110	45 (segue)			$\begin{array}{llllllllllllllllllllllllllllllllllll$
	4.7 3 3 Vf = 2.5 V If = 1.75 A (segue)	$V_a = 250 \text{ V} \\ V_{g_2} = 250 \text{ V}$	$\begin{array}{cccc} C_{i} & = & 8.6 \\ C_{u} & = & 13 \\ C_{g_{1}-a} & = & 1.2 \\ senza & schermo \\ esterno \end{array}$	

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
50 C 5		$\begin{array}{cccc} C_{i} & = & 13 \\ C_{u} & = & 6.1 \\ C_{g_{1}-a} & = & 0.64 \end{array}$	Come per il tipo 50B5
3 5 5		senza schermo esterno	Tetrodo a fascio, amplificatore di potenza a B.F. Diametro bulbo 22,2 bb. Altezza 60,3 mm. max.
Vf = 50 V		·	
If = 0,15 A			
50 L 6 GT			Come per il tipo 6W6-GT
Vf = 50 V $If = 0,15 A$			Tetrodo a fascio, amplificatore di potenza B.F. o amplificatore finale di deflessione verticale TV. Diametro del bulbo 30 mm. Altez za 76 mm. max.


	53		Come per il tipo 6N7-GT
			Doppio triodo, ampiificatore di potenza. Dia- metro bubo 45 mm. Atezza 109 mm. max.
	Vf = 2,5 V If = 2 A	,	
113	56 $Vf = 2,5 V$ $If = 1 A$	$\begin{array}{cccc} C_{i} & = & 3.2 \\ C_{u} & = & 2.2 \\ C_{g_{1}-a} & = & 3.2 \\ \end{array}$	Come per il tipo 76 Triodo amplificatore B.F. Diametro bubo 39 mm. Altezza 95 mm. max.
	57 3 Q	$\begin{array}{cccc} C_{i} & = & 5 \\ C_{u} & = & 6,5 \\ C_{g_{1}-a} & = & 0,007 \end{array}$	Come per il tipo 6J7-G/GT
	2 (1) (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	7	Pentodo, amplificatore B.F. Diametro bulbo 39 mm. Altezza 95 mm. max.

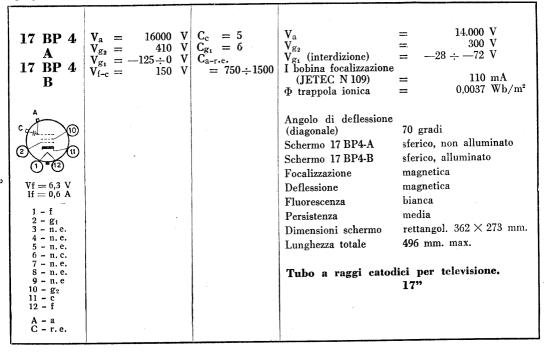
	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
114	58 3 4 2 5 Vf = 2,5 V If = 1 A		C _i = 4,7 C _u = 6,3 C _{g₁-a} = 0,007	Come per il tipo 6U7-G Pentodo, amplificatore per R.F. e F.I. Diametro bulbo 39 mm. Altezza 95 mm. max.
	75 3 4 2 5 Vif = 6,3 V 1f = 0,3 A		$\begin{array}{cccc} C_i & = & 1.7 \\ C_u & = & 3.8 \\ C_{g_1-2} & = & 1.7 \end{array}$	Come per il tipo 6SQ7-GT Doppio diodo-triodo, amplificatore B.F. rivelatore. Diametro bulbo 39 mm. Altezza 95 mm. max.



115	76 3 2 1 5 Vf= 6,3 V If = 0,3 A	$V_{a} = 250 \text{ V}$ $V_{f-c} = 90 \text{ V}$	C _i = C _u = C _{g₁-a} =	2,5	Amplificatore in classe A_1 $V_a = 100 250 V$ $V_g = -5 -13.5 V$ $I_a = 2.5 5 mA$ $\mu = 13.8 13.8$ $R_a \sim 12 9.5 K\Omega$ $G_m = 1150 1450 \mu S$ $Triodo, \text{ amplificatore B.F. e rivelatore. Diametro bulbo 39 mm. Altezza 95 mm. max.}$
	77 3 4 5 1 6 Vf = 6,3 V If = 0,3 A		$\begin{array}{ccc} C_i & = & \\ C_u & = & \\ C_{g_1-a} & = & \end{array}$	4,7 11 0,007	Come per il tipo 6J7-G/GT Pentodo, amplificatore B.F. Diametro bulbo 39 mm. Altezza 95 mm. max.

	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
	78		$C_{i} = 4,5$ $C_{u} = 11$	
116	3 4 2 5 Vf = 6,3 V If = 0,3 A		$\mathbf{C}_{\mathbf{g_1-a}}^{\mathbf{a}} = 0.007$	Come per il tipo 6K7-G/GT Pentodo, amplificatore per R.F. e F.I. Diametro bulbo 39 mm. Altezza 95 mm. max.
0	79 3 (3) (2) (3) (5) (6) (7) (6) (7) (7) (8) (9) (10) (10) (10) (10) (10) (10) (10) (10	Va = 250 V I _a picco per anodo = 90 mA Wa = 11,5 W V _{f-c} = 90 V	+ 7.3	$\begin{array}{llllllllllllllllllllllllllllllllllll$

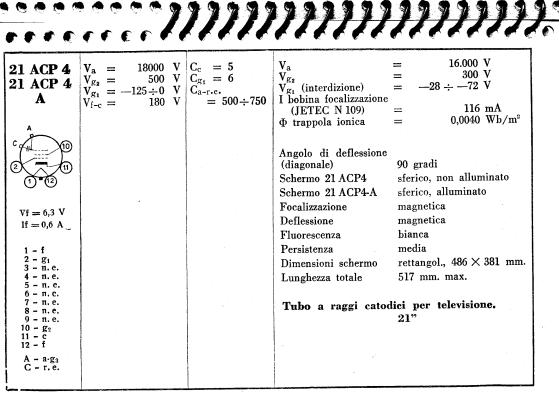
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
83 V 2 3 Vf = 5 V If = 2 A			Come per il tipo 5V4-G Doppio diodo, raddrizzatore delle due semionde. Diametro bulbo mm. 45. Altezza 109 mm. max.
84/6 Z 4 3 0 5 Vf = 6,3 V If = 0,5 A			Massima corrente continua di uscita = 60 mA Massima ampiezza della tensione ano- dica inversa = 1250 V Massima tensione anodica alternata (valore efficace) = 325 V Picco massimo della corrente ano- dica (per diodo) = 180 mA Caduta interna di tensione a 60 mA = 20 V Doppio diodo, rettificatore per due semionde. Diametro bulbo 39 mm. Altezza 95 mm. max.

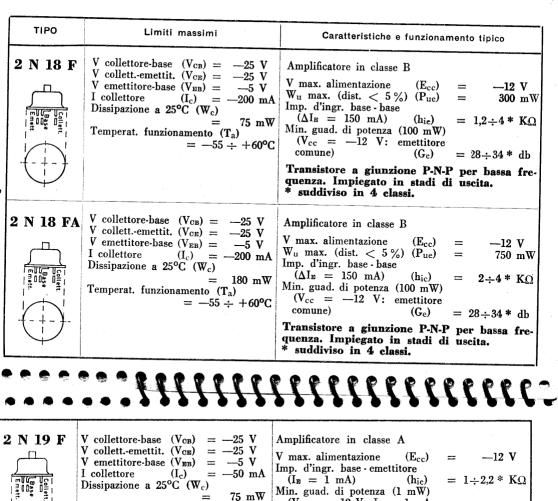


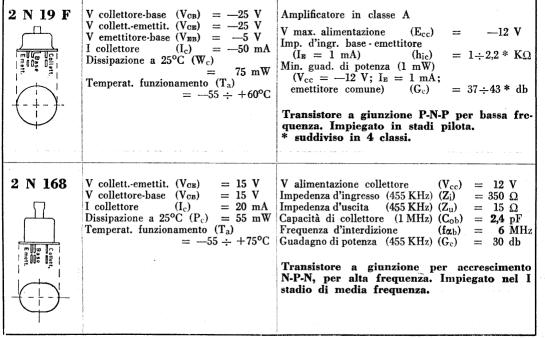
TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
807			
Vf = 6,3 V 1f = 0,9 A			Come per il tipo 6L6-G Tetrodo a fascio, amplificatore di grande poteza a B.F., amplificatore e oscillatore R.F. Diametro bulbo 30 mm. Altezza 68 mm. max.
1603 T 3 4 5 Vf = 6,3 V If = 0,3 A			Come per il tipo 6J7-GT Pentodo, amplificatore a B.F. con basso ronzio. Diametro bulbo 30 mm. Altezza 84 mm. max.

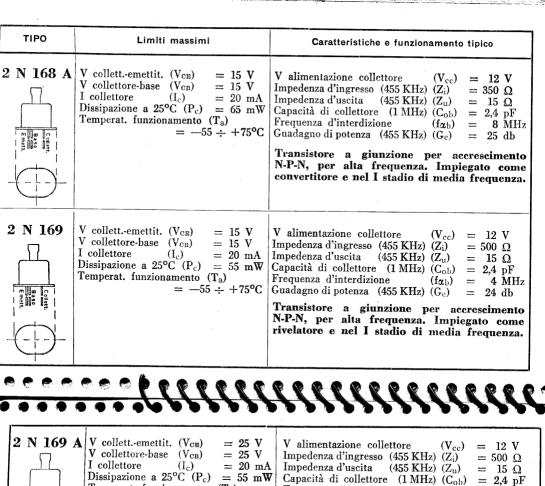
1690 CT	Come per il tipo 6J7-GT
1620 GT Vf = 6,3V If = 0,3 A	Pentodo, amplificatore a B.F. con basso rumore di fondo e microfonicità. Diametro bulbo 30 mm. Altezza 68 mm. max.
1625	Come per il tipo 807
2 1 7 Vf = 12,6 V 1f = 0,45 A	Tetrodo a fascio, amplificatore di grande po- teza a B.F., amplificatore e oscillatore R.F. Diametro bulbo 30 mm. Altezza 68 mm. max.
1629	Come per il tipo 6E5-GT
Vf = 12,6 V 1f = 0,15 A	Indicatore di sintonia a raggi catodici. Dia- metro bulbo 30 mm. Altezza 69 mm. max.

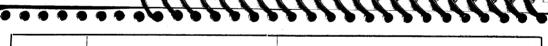
	TIPO	Limiti masşimi	Capacità in pF	Caratteristiche e funzionamento tipico
122	1851 GT O			Come per il tipo 6AC7-GM Pentodo, amplificatore a R.F. e F.I. Diametro bulbo 30 mm. Altezza 68 mm. max.
2	1853 GT			Come per il tipo 6AB7-GM Pentodo, amplificatore a R.F. e F.I. Diametro bulbo 30 mm. Altezza 68 mm. max.

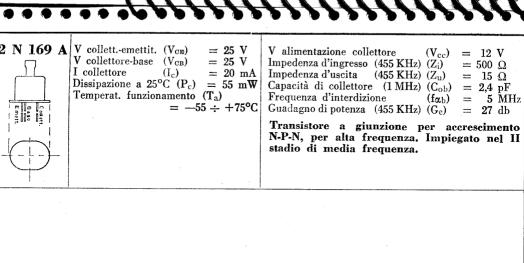

TIPO	Limiti massimi	Capacità in pF	Caratteristiche e	funzionamento tipico
17 AVP 4. A (a) (b) (c) (c) (d) (d) (e) (e) (e) (f) (e) (f) (e) (f) (f	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{c} = 5$ $C_{g_{1}} = 6$ $C_{a-r.e.} = 750 \div 1500$	V_{g_2} = V_{g_1} (interdizione) = V_{g_4} = Φ trappola ionica = Φ Angolo di deflessione (diagonale) Schermo Focalizzazione Deflessione Fluorescenza Persistenza Dimensioni schermo Lunghezza totale Tubo a raggi catodic	90 gradi sferico, alluminato elettrostatica magnetica bianca media rettangol.362 × 273 mm 406 mm. max.


$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e funzionamento tipico
$\begin{array}{c} \text{(diagonale)} & \text{70 grad} \\ \text{Schermo} & \text{cilindrico, non alluminat} \\ \text{Schermo} & \text{cilindrico, non alluminat} \\ \text{Schermo} & \text{magnetica} \\ \text{Deflessione} & \text{magnetica} \\ \text{Deflessione} & \text{magnetica} \\ \text{Deflessione} & \text{magnetica} \\ \text{Fluorescenza} & \text{bianca} \\ \text{Persistenza} & \text{media} \\ \text{Dimensioni schermo} & \text{rettangol., } 362 \times 273 \text{ mm} \\ \text{Lunghezza totale} & 496 \text{ mm. max.} \\ \text{Tubo a raggi catodici per televisione.} \\ \text{17"} \\ \text{Tubo a raggi catodici per televisione.} \\ \text{17"} \\ \end{array}$	مُ م	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} C_{g_1} = 6 \\ C_{a-r} \cdot e \end{array}$	$egin{array}{ccccccccc} V_a & & & & & & & & & & \\ V_{g_2} & & & & & & & & & & \\ V_{g_1} & (interdizione) & & & & & & & & \\ I & bobina & focalizzazione & & & & & & & \\ (JETEC & N & 109) & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\$
Tubo a raggi catodici per televisione. 11 - c 12 - f A - a·g ₃ C - r. e.	$Vf = 6,3 \text{ V}$ $If = 0,6 \text{ A}$ $1 - f$ $2 - g_1$ $3 - n. e.$ $4 - n. e.$ $5 - n. e.$ $6 - n. c.$ $7 - n. e.$			(diagonale) 70 gradi Schermo cilindrico, non alluminat Focalizzazione magnetica Deflessione magnetica Fluorescenza bianca Persistenza media Dimensioni schermo rettangol., 362 × 273 mn
•••••••••••••••••••••••••••••••••••••••	9 - n. e. 10 - g ₂ 11 - c 12 - f A - a-g ₃			Tubo a raggi catodici per televisione. 17"
			17777	


17 RP 4/ 17 HP 4 A 17 HP 4 B 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{g_1} = 6$ $C_{a-r\cdot e}$ $= 750 \div 1500$	Vg ₄ = Φ trappola ionica = Angolo di deflessione (diagonale) Schermo 17RP4/17HP4-A Schermo 17HP4-B Focalizzazione Deflessione Fluorescenza Persistenza Dimensioni schermo Lunghezza totale Tubo a raggi catodici	70 gradi sferico, non alluminato sferico, alluminato elettrostatica magnetica bianca media rettangol., 362×273 mm 496 mm. max.
---------------------------------------	--	--	---	--


TIPO	Limiti massimi	Capacità in pF	Caratteristiche e	funzionamento tipico
17 VP 4/ 17 LP 4 c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{c} = 5$ $C_{g_{1}} = 6$ $C_{a-r.e.} = 750 \div 1500$	V _a V _{g₂} V _{g₁} (interdizione) V _{g₄} Φ trappola ionica Angolo di deflessione (diagonale) Schermo Focalizzazione Deflessione Fluorescenza Persistenza Dimensioni schermo Lunghezza totale	= -56 ÷ +308 V = 0,0037 Wb/m ² 70 gradi cilindrico, non alluminato elettrostatica magnetica bianca media
8 - n. e. 9 - n. e. 10 - g ₂ 11 - c 12 - f A - a·g _{3°5} C - r. e.			Tubo a raggi catod	ici per televisione. 17"




	TIPO	Limiti massimi	Capacità in pF	Caratteristiche e	funzionamento tipico
8	21 ALP 4 21 ALP 4 A c 4 c 4 c 4 c 6 c 7 c 7 c 7 c 7 c 7 c 7 c 7	$V_{g_1} = -125 \div 0 \text{ V}$ $V_{g_2} = -500 \div +1000 \text{ V}$ $V_{f-c} = 180 \text{ V}$	C _{a-r.e.} = 500÷750	Angolo di deflessione (diagonale) Schermo 21 ALP4 Schermo 21 ALP4-A Focalizzazione Deflessione Fluorescenza Persistenza Dimensioni schermo Lunghezza totale Tubo a raggi catoo	= 16.000 V = 300 V = -28 ÷ -72 V = -64 ÷ +352 V = 0,0040 Wb/m² 90 gradi sferico, non alluminato sferico, alluminato elettrostatica magnetica bianca media rettangol., 486 × 381 mm. 517 mm. max. dici per televisione. 21"
	21 AUP 4 A 6 C (1) 1 12 Vt = 6,3 V	$V_a = 18000 \text{ V} \\ V_{g_2} = 500 \text{ V}$	$C_{c} = 5$ $C_{g_{1}} = 6$ $C_{a-r,e}$ $= 500 \div 750$	$egin{array}{cccccccc} V_a & = & V_{g_2} & = & V_{g_1} & = & V_{g_4} &$	= 16.000 V = 300 V = -28 ÷ -72 V = -64 ÷ +352 V = 0,0040 Wb/m ² 72 gradi sferico, alluminato elettrostatica magnetica
9	If = 0,6 A 1 - f 2 - g ₁ 3 - n.e. 4 - n.e. 5 - n.e. 6 - g ₄ 7 - n.e. 8 - n.e. 9 - n.c. 10 - g ₂ 11 - c 12 - f A - a·g _{3°5} C - r. e.			Persistenza	bianca media rettangol., 486 × 381 mm 594 mm. max. ici per televisione. 21"

cn